This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 21 February 2013, At: 11:55

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Tetrakis (Deuteriomethyl) Tetraselenafulvalene

E. Aharon-shalom ^a , F. Wudl ^a , S. H. Bertz ^a , W. M. Walsh Jr. ^a , L. W. Rupp Jr. ^a , P. M. Chaikin ^b , M. J. Burns ^b , K. Andres ^c & H. Schwenk ^c

^a Bell Laboratories, Murray Hill, New Jersey, 07974

To cite this article: E. Aharon-shalom , F. Wudl , S. H. Bertz , W. M. Walsh Jr. , L. W. Rupp Jr. , P. M. Chaikin , M. J. Burns , K. Andres & H. Schwenk (1982): Tetrakis (Deuteriomethyl) Tetraselenafulvalene, Molecular Crystals and Liquid Crystals, 86:1, 35-41

To link to this article: http://dx.doi.org/10.1080/00268948208073666

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

^b University of California, Los Angeles, California, 90024

^c Zentralinstitut für Tieftemaperaturforschung, Garching, West Germany Version of record first published: 14 Oct 2011.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1982, Vol. 86, pp. 35-41 0026-8941/82/8601-0035\$06.50/0
© 1982 Gordon and Breach, Science Publishers, Inc. Printed in the United States of America

(Proceedings of the International Conference on Low-Dimensional Conductors, Boulder, Colorado, August 1981)

TETRAKIS (DEUTERIOMETHYL) TETRASELENAFULVALENE

E. AHARON-SHALOM, F. WUDL, S. H. BERTZ, W. M. WALSH, JR., and L. W. RUPP, JR.

Bell Laboratories Murray Hill, New Jersey 07974

P. M. CHAIKIN and M. J. BURNS

University of California
Los Angeles, California 90024

K. ANDRES and H. SCHWENK

Zentralinstitut für Tieftemaperaturforschung Garching, West Germany

Received for publication December 2, 1981

The preparation of >99% D tetramethyl tetraselenafulvalene is described. The synthesis involves hydrogen deuterium exchange of biacetyl followed by conversion to d_7 -3-chloro-2-butanone. The latter was transformed to the title compound via known procedures. The physical properties of the salts $(d_{12}$ -TMTSF)₂PF₆ and $(d_{12}$ -TMTSF)₂ClO₄ are reported.

INTRODUCTION

The restoration of metallic conductivity below the metal to insulator transition temperature (T_{MI}) with low electric fields in the organic superconductor bis tetramethyl tetraselenafulvalenium hexaflurophosphate [(TMTSF)₂PF₆] has been interpreted as arising from depinning of spin density waves (SDW). There have been attempts to corroborate this interpretation² and to find other elucidations for the above observations. There is, however, only one definitive way to confirm the existence of SDW's and that is

by means of neutron scattering experiments. Since the background due to incoherent neutron scattering is much larger for protons than for deuterons, and since SDW's would be expected to be of weak intensity,4 they would be more easily observed in $(d_{12}-TMTSF)_2PF_6$. Therefore, it was necessary to prepare the fully deuterated analog of TMTSF. Also, since the carbon-deuterium bond is slightly shorter than the carbonhydrogen bond, d₁₂-TMTSF is expected to be slightly smaller than TMTSF. This difference in size might have an effect on both (T_c) metal-to-superconductor TMI and the temperatures (under pressure⁵ for the PF₆ salt and atmospheric pressure for the ClO₄ salt).⁶ For the above reasons we decided to prepare d₁₂-TMTSF, and here we report on its preparation, spectroscopic properties some physical and properties (d₁₂-TMTSF)₂PF₆ and (d₁₂-TMTSF)₂ClO₄ in comparison with the protio metals.

RESULTS AND DISCUSSION

Scheme I describes the most efficient synthetic approach for the preparation of d_7 -3-chloro-2-butanone (3), the key substance to the target molecule, d₁₂-TMTSF (4). The chloroketone thus obtained was converted to d₁₂-TMTSF (4) via our modification of the usual synthesis. 8,9 Precautions were taken to always keep the reaction medium fully enriched in deuterium; for example, the usual cyclization of the diselenocarbamate precursor to the 2dimethylamino-1,3-diselenolium ion was performed in D₂SO₄. The final product (4) was twice gradient sublimed onto Teflon and analyzed spectroscopically. The UV-vis spectrum and cyclic voltammetry half-wave potentials were (within experimental error) identical to TMTSF. Infrared spectroscopy (cf Table I) revealed that (within experimental error, ± 5%) there was no absorption due to C-H stretching, and only absorption due to C-D stretching (2225-2050 cm⁻¹) and bending vibrations. spectra could only be obtained when samples were sublimed directly onto sodium chloride plates. The hexafluorophosphate and perchlorate salts were prepared electrolytically in the usual manner and subjected to the usual physical measurements. Results of these are shown in figures.

TABLE I: PHYSICAL PROPERTIES OF	b	, TMTSF	75 d	,, TMTSF
---------------------------------	---	---------	------	----------

INFRA RED ^(a)		RAMAN(b)		ULTRA VIOLET VISIBLE(c)	CYCLIC VOLTAMMETRY(d)	
h ₁₂	d ₁₂	<u>h₁₂</u>	<u>d₁₂</u>	b ₁₂ d ₁₂	h ₁₂ d ₁₂	
2970 (m)	2225 (m)	1537	1537	508 ± 5	$E_{11}^{1} = 430 \pm 10$	
2902 (s)	2190 (m)	1496	1496	299 ± 1	$E_{\rm M}^2 = 730 \pm 10$	
2840 (m)	2095 (m)	68 0	_			
	2050 (m)	453	453			
1617 (m)	1599 (m)	274	296			
1438 (vs)	1170 (m)					
1145 (m)	1108 (m)					
1062 (s)	1036 (s)					
665 (s)	1007 (m)					
	942 (vs)					
	742 (w)					
(a) cm ⁻¹	658 (m)					

- (b) totally symmetric modes; k. iwahana et al¹¹
- (c) nm
- (d) mV vs SCE

Scheme I: Synthesis of d₇-3-chlorobutanone (3)

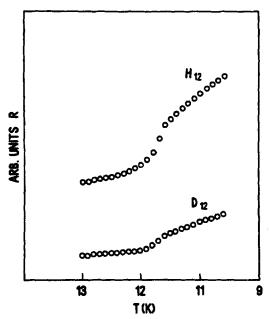


Figure 1: D.C. resistivity of $(TMTSF)_2PF_6$ and $(d_{12}-TMTSF)_2PF_6$ vs. temperature.

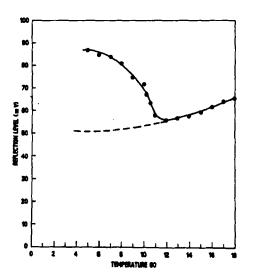


Figure 2: The microwave reflection level of (TMTSF)₂PF₆ (dashed curve) and of (d₁₂-TMTSF)₂ as a function of temperature indicating pinning of the SDW state in the deuterated salt.

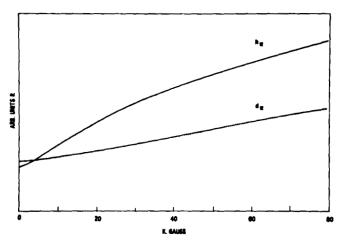


Figure 3: Magneto-resistance of (TMTSF)₂PF₆ and of (d₁₂-TMTSF)₂PF₆ at 4.4 k.

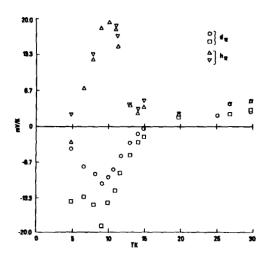


Figure 4: Thermopower of (TMTSF)₂PF₆ and of (d₁₂-TMTSF)₂PF₆ vs. temperature.

The D.C conductivity of $(d_{12}\text{-TMTSF})_2\text{PF}_6$ and $(\text{TMTSF})_2\text{PF}_6$ at atmospheric pressure shown in figure 1 indicates no isotope effect on T_{MI} within experimental error \pm 0.2 K. On the other hand EPR (Figure 2), magnetoresistance (Figure 3) and thermopower (Figure 4) measurements are different for both metals. These differences are attributed to disorder due to residual protons in the samples and probably not to an isotope effect.

The $(d_{12}\text{-TMTSF})_2\text{ClO}_4$ salt in comparison to its protonated analog shows a broader transition before becoming superconducting.⁶ This again can be interpreted as due to the disorder mentioned above. A possible isotope effect on T_c of the order of 90 mk is suggested from the magnetization measurements.¹⁰ The heavier, deuterated, salt shows a lower T_c as would be expected from BCS theory (Figure 5).

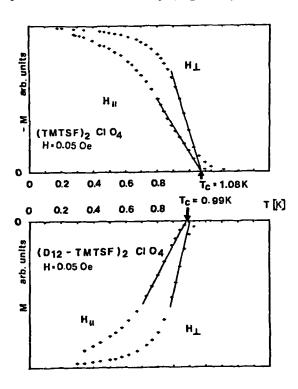


Figure 5: Magnetization behavior of (TMTSF)₂ClO₄ and (d₁₂-TMTSF)₂ClO₄ vs. temperature.

REFERENCES

- Walsh, W. M. Jr.; Wudl, F.; Thomas, G. A.; Nalewajek, D.; Hauser, J. J.; Lee, P. A.; Poehler, T. O. Phys. Rev. Lett. 1980, 45, 829.
- Andrieux, A.; Jerome, D.; Bechgaard, K. J. Phys. Lett. 1981, 42, L-87.
- Chaikin, P. M.; Grüner, G.; Engler, E. M.; Greene, R. L. Phys. Rev. Lett. 1980, 45, 1874.
- 4. Moncton, D.; Thomas, G. A. Private communication.
- Jerome, D.; Mazaud, A.; Ribault, M.; Bechgaard, K. J. Phys. Lett. 1980, 41, L-95. Andres, K.; Wudl, F.; McWhan, D. B.; Thomas, G. A.; Nalewajek, D.; Stevens, A. L. Phys. Rev. Lett. 1980, 45, 1449.
- Parkin, S. S. P.; Ribault, M.; Jerom, D. and Bechgaard, K. preprint 1981.
- 7. Wudl, F.; Aharon-Shalom, E.; Bertz, S. H. J. Org. Chem. 1981, 46, 0000.
- Bechgaard, K.; Cowan, D. O.; Bloch, A. N. J. Chem. Soc., Chem. Commun. 1974, 937.
- Wudl, F.; Nalewajek, D. ibid. 1980, 866. Wudl, F.; Andres, K.; McWhan, D. B.; Thomas, G. A.; Nalewajek, D.; Walsh, W. M. Jr.; Rupp, L. W., Jr.; DiSalvo, F. J.; Wazczak, J. V.; and Stevens, A. L. Chem Scripta 1981, 17, 19.
- Schwenk, H.; Neumair, K.; Andres, K.; Wudl, F. and Aharon-Shalom E. Mol. Cryst. and lig. Cryst., these proceedings.
- 11. Iwahana, K.; Kuzmany, H.; Wudl, F. and Aharon-Shalom, E. Mol. Cryst. and liq. Cryst., these proceedings.